
Max Planck Institute Magdeburg
Preprints

Peter Benner Ernesto Dufrechou Pablo Ezzatti

Enrique S. Quintana-Ort́ı Alfredo Remón

Extending Lyapack for the Solution of

Band Lyapunov Equations on Hybrid

CPU-GPU Platforms

MPIMD/14-13 July 24, 2014

FÜR DYNAMIK KOMPLEXER

TECHNISCHER SYSTEME

MAGDEBURG

MAX−PLANCK−INSTITUT

Abstract

The solution of large-scale Lyapunov equations is an important tool for the solu-

tion of several engineering problems arising in optimal control and model order

reduction. In this work we investigate the case when the coefficient matrix of

the equations presents a band structure. Exploiting the structure of this matrix

we can achive relevant reductions in the memory requirements and the number

of floating-point operations. Additionally, the new solver efficiently leverages the

parallelism of CPU-GPU platforms. Furthermore, it is integrated in the lya-

pack library to facilitate its use. The new codes are evaluated on the solution of

several benchmarks, exposing significant runtime reductions with respect to the

original CPU version in lyapack.

Contents

1. Introduction 2

2. Solution of Lyapunov equations 2
2.1. The lyapack toolbox . 3
2.2. CPU-GPU version of lyapack . 4

3. High performance band Lyapunov solver 4
3.1. Band linear system solver . 4
3.2. Band matrix-matrix multiplication . 6

3.2.1. Algorithm gbmmBLK . 6
3.2.2. Implementation gbmm . 7
3.2.3. Implementation gbmmms . 9

4. Experimental Evaluation 9

5. Concluding Remarks 11

Peter Benner, Alfredo Remón

Computational Methods in Systems and Control Theory, Max Planck

Institute for Dynamics of Complex Technical Systems, Magdeburg Germany,

{benner,remon}@mpi-magdeburg.mpg.de
Ernesto Dufrechou, Pablo Ezzatti

Instituto de Computación, Univ. de la República, Montevideo, Uruguay,

{edufrechou,pezzatti}@fing.edu.uy
Enrique S. Quintana-Ort́ı

Depto. de Ingenierı́a y Ciencia de Computadores, Universidad Jaime I,

Castellón, Spain

quintana@icc.uji.es

Imprint:

Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg

Publisher:
Max Planck Institute for

Dynamics of Complex Technical Systems

Address:
Max Planck Institute for

Dynamics of Complex Technical Systems

Sandtorstr. 1

39106 Magdeburg

http://www.mpi-magdeburg.mpg.de/preprints/1

1 Introduction

Lyapunov (matrix) equations appear in a number of engineering and scientific problems
as, for example, in model order reduction and many areas of control theory; see [1, 8,
14]. The solution of Lyapunov equations has been widely studied and several efficient
and numerically reliable methods can be found in the literature. In many applications,
the Lyapunov equations are of large dimension, and, in consequence, their solution
involves a large amount of data and a vast computational cost. In response, the use of
High Performance Computing (HPC) techniques and architectures is mandatory. To
illustrate this, the solver provided by lyapack makes an intensive use of tuned HPC
kernels in blas and lapack.

In a set of applications, the coefficient matrix of in the Lyapunov equation exhibits
an specific structure: symmetry, banded, etc. In such cases, the Lyapunov solver can
be specialized to exploit the benefits of the related structure to reduce either, the
memory requirements, the computational cost, or both.

In recent years, Graphics Processing Units (GPUs) have shown remarkable perfor-
mance in the computation of large-scale matrix operations, and particularly, in the
solution of matrix equations; see [4, 5] among others. In addition to its performance,
GPUs present other interesting properties, such as a low Watt-per-floating-point arith-
metic operation ratio and an afforable price.

In this paper we address the solution of large Lyapunov equations with a banded
coefficient matrix. Our approach exploits the structure of the matrix and the ample
hardware parallelism of the GPUs to obtain a Lyapunov solver that can be applied to
the solution of large-scale problems. Additionally, we have integrated the proposal in
the lyapack library [13].
The rest of the paper is organized as follows. In Section 2 we introduce the Lyapunov

equations and lyapack toolbox. The proposed solver is presented in Section 3 and
evaluated in Section 4. Finally some concluding remarks are outlined in Section 5.

2 Solution of Lyapunov equations

Consider the Lyapunov matrix equation with factored right hand side:

AX +XAT = −BBT , (1)

whereA ∈ R
n×n is the coefficient matrix, B ∈ R

n×m, andX ∈ R
n×n is the sought-after

solution. Such matrix equations play a key role in a few control theory applications.
For example, the solution of one or more Lyapunov equations are required by SVD-
based methods for balanced truncation model reduction [1, 6], Newton’s methods
for the algebraic Riccati equation associated with linear-quadratic optimal control
problems [2], stabilization methods and stability tests for linear dynamical systems
as well as the computation of the H2-norm of stable linear control systems [8, 10].
Complex control systems or discretizations of partial differential equations easily lead
to matrices of order n = 104 to 105 or even larger.

2

In this work we focus in the solution of (1) when A is a band matrix, meaning that
all the nonzero entries of A reside in a narrow band, including the main diagonal and
a set of consecutive super- and sub-diagonals.
We investigate the solution of Lyapunov equations via the LR-ADI (low-rank Al-

ternating Direction Implicit iteration) method [12], which takes advantage of the fre-
quently encountered low-rank property of B [1] to compute a low-rank approximation
to a full-rank factor ofX. This approach reduces notoriously the memory requirements
and the number of arithmetic operations needed, facilitating the solution of large-scale
problems.
Specifically, given an “l–cyclic” set of complex shifts {p1, p2, . . .}, with pk = pk+l,

pk = αk + βk , and =
√
−1, the cyclic LR-ADI for the Lyapunov equation can be

formulated as follows:

V0 := (A+ p1In)
−1B, S0 :=

√
−2 α1 V0,

Vk+1 := Vk − δk(A+ pk+1In)
−1Vk, Sk+1 := [Sk , γkVk+1] ,

(2)

where γk :=
√

αk+1/αk, δk := pk+1 + pk, pk stands for the conjugate of pk, and
In denotes the identity matrix of order n. Upon convergence, after k̄ iterations, a
low-rank matrix Sk̄ ∈ R

n×k̄m is obtained such that X ≈ Sk̄S
T

k̄
.

The convergence of the LR-ADI method can be accelerated by a careful selection of
the shifts {p1, p2, . . .}. In practice, the computation of these parameters involves an
Arnoldi iteration with the coefficient matrix A and its inverse. For further details on
the convergence of the LR-ADI iteration and the properties of heuristic vs. optimal
procedures to select the shift parameters, see [12, 15].
From the computational point of view, the cost of the algorithm lies in two basic

linear algebra operations: the matrix-matrix products to compute the shifts, and the
solution of the linear systems in Eq. (2). Tuned kernels that exploit the band structure
of A report relevant savings in both operations, and hence, in the Lyapunov solver.

2.1 The lyapack toolbox

lyapack [13] is a MATLAB toolbox which offers a variety of numerical routines for
the solution of Lyapunov and Riccati equations, model order reduction, and optimal
control. The toolbox is appropriate for large and sparse problems and/or structured
dynamical systems. Two main properties of lyapack are its user-friendly interface
and a flexible modular architecture which facilitates its extension and customization.
The Lyapunov solver in lyapack is the cornerstone for most of the problems ad-

dressed by the toolbox. The solver is an efficient implementation of the LR-ADI
method. The principal routines in lyapack perform the most expensive computations
in terms of three types of basic matrix operations (BMOs): Z := AY , Z := A−1Y , and
Z := (A+pIn)

−1Y . In all cases, one of the inputs of the BMO is the coefficient matrix
of the Lyapunov equation, A, while Y is a matrix with a small number of columns and
p is a scalar. lyapack’s strategy to accommodate coefficient matrices with different
nonzero patterns (e.g., sparse, tridiagonal, band,. . .) is a reverse communication inter-

face also adopted, e.g., by ARPACK and PETSc. Thus, it is the user’s responsibility

3

to supply a tuned kernel to compute each BMO (hereafter, referred to as user-supplied
functions or USFs) that efficiently leverages the nonzero pattern of the problem on a
specific target architecture.
In summary, the use of USFs yields a “soft” object-oriented polymorphism. Data

from the matrix A is stored into hidden global variables, and the purpose of the USFs
is to manipulate these data structures (e.g., create and release the global data) and
compute the corresponding BMOs. In consequence, the user has the opportunity
to adapt the solver to the particular features of a given problem and the hardware
architecture, providing tuned USFs, while the numerical methods and properties in
lyapack are preserved.

2.2 CPU-GPU version of lyapack

In [9] we provided a general framework to use CUDA kernels from lyapack with min-
imal changes to the library. Precisely, the design philosophy underlying this toolbox
gives us the opportunity to leverage the acceleration of a GPU without modifying the
contents of the library, by implementing the appropriate CUDA-enabled USFs. Con-
cretely, this solution leverages the MATLAB Mex API that provides interoperability
between MATLAB and other programming languages such as C, Fortran or, in our
case, CUDA. This approach also permits to invoke hybrid multi-threaded and CUDA
codes that simultaneously execute tasks on both CPU and GPU, and attaining and
efficient use of all the available resources in the hardware.

3 High performance band Lyapunov solver

As previously stated, the main computational kernels during the computation of the
LR-ADI method for the solution of band Lyapunov matrix equations are the band
matrix-matrix product and the solution of band linear systems. We present an imple-
mentation of the LR-ADI method based on tuned implementations of both operations
for a CPU-GPU architecture. These kernels are integrated in the lyapack library
via USFs. Specifically, the library plugs the USFs into the two main BMOs in the
solver, namely the product of matrices and the linear systems solver. Thus, we obtain
a specific Lyapunov solver for the band case. We emphasize that the performance of
this solver is dictated by the performance of the USFs provided.
Additionally, our implementations aim at reducing the number and volume of data

transfers between the CPU and the GPU memory address spaces, by re-utilizing data
that are already in the GPU memory. For example, given that the shifted systems
to be solved for Vk+1 during the LR-ADI iteration in (2) share the same coefficient
matrix, except for the shift parameter, we transfer the matrix A to the GPU memory
only once, and construct/solve the different systems there.

3.1 Band linear system solver

The solution of a linear system, AX = B, can be tackled in the following steps:

4

α
00

α
10

α
20

α
01

α
11

α
21

α
31

α
12

α
22

α
32

α
42

α
23

α
33

α
43

α
53

α
34

α
44

α
54

α
45

α
55

α
00

α
10

α
01

α
11

α
21

α
12

α
22

α
32

α
23

α
33

α
43

α
34

α
44

α
54

α
45

α
55

α
42

α
31

α
53

α
20

α
00

α
10

α
11

α
20

α
21

α
22

α
12

α
23

α
31

α
32

α
33

α
42

α
44

α
34

α
53

α
54

α
45

α
55

α
01

α
43

*

*

* ** * **

** * **

* *

*

*

* *

*

Figure 1: 6 × 6 band matrix with upper and lower bandwidths kl = 2 and ku =
1, respectively (left); packed storage scheme used in lapack (center); and
modified storage scheme with nb = 2 (right).

1. Compute the factorization of A (LU = A).

2. Solve the lower triangular system (LY = B).

3. Solve the upper triangular system (UX = Y).

If A is a band matrix, then L and U are triangular band matrices. In particular, let
kl and ku denote, respectively, the lower and upper bandwidths of A; then L is a lower
triangular band matrix with bandwidth kl, and U is an upper triangular band matrix
with bandwidth kl + ku. Therefore, exploiting the structures of A, L and U , yields
important reductions in the computational cost of the three steps. The library lapack

provides a specific routine, gbsv, for the solution of band linear systems that exploit
the structure of A in all the computations1. The lapack solver relies on the packed
storage and the specific kernels for band matrices in blas. The use of a multi-threaded
implementation of blas provides a parallel efficient solver for current CPUs.

The storage format for band matrices defined in blas permits a regular access
pattern and, at the same time, allows important memory savings (see Figure 1 for an
example). Nevertheless, it also constrains the performance of gbsv (see [3]).
In a previous work [3] we presented a GPU-based solver for band linear systems

that mitigates the limitations encountered in the lapack routines. In particular, we
introduce minor changes to the matrix storage scheme that, at the cost of a moder-
ate increase in the memory requirements (see Figure 1 - right), allows to overcome
the limitations encountered in routine gbsv and reports relevant gains in terms of
performance and execution time. The solver is based on two hybrid CPU-GPU ker-
nels that compute the LU factorization of a band matrix and solve a band triangular
system. The implementation includes several HPC techniques, reaches a remarkable
performance, and outperforms a lapack-like routine based on tuned cublas kernels.
However it still presents some drawbacks:

• Since it is a three-stage method, two synchronization points are mandatory.

• The matrix A is fully accessed twice, first during the computation of the LU
factorization and later for the solution of the two band triangular systems (the

1For numerical reasons, pivoting is required in the factorization of A. Although, for simplicity, it is
not included in our discussion, the lapack implementations and all the implementations presented
include pivoting.

5

lower triangular system in stage 2, and the upper triangular part in the second
solver).

We next present a solver with a single synchronization point and a reduced number
of memory accesses. The central idea is a reorganization of the procedure, merging
two stages: the factorization of A and the solution of the triangular system with L.
This new approach presents the following advantages:

• Data locality: we anticipate the solution of the linear system involving L, as this
operation is performed when the procedure is still manipulating these blocks.

• Concurrent execution: we can overlap two operations on two different processors,
and therefore we can hide the computational cost of the least time-consuming
one.

• Less memory accesses are required, since the lower triangular part of A (L) is
accessed only once.

3.2 Band matrix-matrix multiplication

The band matrix-matrix product of the form

C = βC + αAB, (3)

is an operation with a large intrinsic parallelism. It is a level-3 blas operation and
hence, high performance can be expected from it. The blas specification includes a
routine to compute the band matrix-vector product (gbmv), but none for the compu-
tation of a band matrix-matrix product. Consequently, libraries that implement the
blas specification provide efficient implementations of the band matrix-vector prod-
uct but not for the related matrix-matrix product. This is the case for intel mkl or
nvidia cublas.
The effortless approximation to compute the related matrix-matrix product is to use

the routine gbmv iteratively (one for each column of CB). However this approach leads
to unnecessary memory accesses and, therefore, to an inefficient use of the memory
hierarchy in the architecture. The drawbacks from this naive implementation can be
overcomed using a blocked algorithm. Next, we present such a blocked algorithm,
gbmmBLK , and two implementations that off-load the most expensive computations
to the GPU.

3.2.1 Algorithm gbmmBLK

The algorithm is divided into two loops, see Figures 3 and 4. For simplicity, we
assume momentarily that α = β = 1 in (3). The outer loop (Figure 3) partitions the
matrices B and C into blocks of c columns; at each iteration of the loop, the elements
in the active column-block of C are computed. The inner loop progresses along the
columns of C, from left to right, computing its elements. Figure 4 shows the operations
performed in the inner loop. The matrices B and C are partitioned row-wise, while A

6

A
22

A
30

.
kl+1

ku+1

= +ku+kl+1

A00

A20

b

b

updated
read

cc

C1

C3

C2

C1

C3

C2

B1

A32

A21

A31

A
12A10

A22

A11

Figure 2: Elements read and updated during an iteration of the inner loop of the
gbmminner

BLK
algorithm.

Algorithm: [C] := gbmmBLKouter
(C,A,B, ku, kl)

Partition C →
(

CL CR

)

, B →
(

BL BR

)

where CL, BL have 0 columns

while n(CL) < n(C) do

Determine block size c

Repartition
(

CL CR

)

→

(

C0 C1 C2

)

,
(

BL BR

)

→

(

B0 B1 B2

)

where C1, B1 have c columns

C1 := gbmmBLKinner
(C1, A,B1, ku, kl)

Continue with
(

CL CR

)

←

(

C0 C1 C2

)

,
(

BL BR

)

←

(

B0 B1 B2

)

endwhile

Figure 3: Outer loop of the algorithm that computes C := A · B + C, with A general
band with upper and lower bandwidth ku and kl, respectively.

requires a 3× 2 → 5× 3 re-partition. At each iteration, blocks A11, A21 and A31 are
accessed. One relevant property of this partitioning is that A11 and A31 are lower and
upper triangular, respectively. Figure 2 details the blocks accessed and updated at a
given iteration of the inner loop.
gbmmBLK employs two blocksizes, one per loop: c defines the number of columns

of C computed in a given iteration of the outer loop; and b is the number of columns
of A that are accessed at each iteration of the inner loop. These two parameters need
to be tuned in order to optimize the execution of the algorithm for a particular target
architecture.
The main advantage of algorithm gbmmBLK is that it can be implemented using

blas-3 kernels and hence, a high performance can be expected from it.

3.2.2 Implementation gbmm

The gbmm routine is a straight-forward implementation of algorithm gbmmBLK . In an
initial stage, all the matrices are initially copied to the device. Then, βC is computed
using the scal routine in cublas. This is not a blas-3 operation, but presents a
relatively small computational cost and can be efficiently computed on the device due

7

Algorithm: [E] := gbmmBLKinner
(E,A,D, ku, kl)

Partition E →

ET

EM

EB

 , A→

ATL

AML AMR

ABR

 , D →

(

DT

DB

)

where ET , DT have 0 elements; ATL is 0× 0 and EM , AML have kl rows

while m(ET) < m(E) do

Determine block size b

Repartition

ET

EM

EB

→

E0

E1

E2

E3

E4

,

ATL

AML AMR

ABR

→

A00

A10 A11

A20 A21 A22

A31 A32

A42

,

(

DT

DB

)

→

D0

D1

D2

where D1 has b rows;
E1 has 0 rows if m(D0) < (ku + 1) and has b rows otherwise;
E3 has 0 rows if m(D0) > (n(A)− kl − 1) and has b rows otherwise;
A11 is empty if m(D0) < (ku + 1) and is b× b otherwise;
A31 is empty if m(D0) > (n(A)− kl − 1) and is b× b otherwise

E1 := E1 +A11 ·D1

E2 := E2 +A21 ·D1

E3 := E3 +A31 ·D1

Continue with

ET

EM

EB

←

E0

E1

E2

E3

E4

,

ATL

AML AMR

ABR

←

A00

A10 A11

A20 A21 A22

A31 A32

A42

,

(

DT

DB

)

←

D0

D1

D2

endwhile

Figure 4: Inner loop of the algorithm that computes C := A · B + C, with A general
band with upper and lower bandwidth ku and kl, respectively.

to its inherent parallelism. Next, the product of matrices is computed, and finally C
is transferred back to the CPU. The update of E2 (see Figure 4) requires a general
matrix-matrix product (gemm), an operation supported by cublas. The updates of
the blocks E1 and E3 require two matrix products involving triangular matrices, A11

and A31, respectively. Routine trmm of cublas implements this operation in the
form

C = αAB, (4)

but unfortunately differs from the functionality required by gbmmBLK , since (4) over-
writes C with the result. To overcome this problem, routine gbmm performs two
operations in order to update E1:

(trmm) W := AD1, (5)

(geam) E1 := E1 +W. (6)

8

Problem n ku = kl # nonzeros m

RAILS 5,177 139 35,185 7
RAILM 20,209 276 139,233 7
RAILL 79,841 550 553,921 7

Table 1: Instances of the RAIL example from the Oberwolfach model reduction
collection.

Next to each operation in (5)-(6) is the cublas routine that supports it. The update
of E3 is analogous. This procedure requires a reduced auxiliary storage W ∈ R

b×c.
High performance should be expected from this implementation since it fully employs

tuned cublas routines.

3.2.3 Implementation gbmmms

This implementation is based on the modified storage scheme (see Figure 1 - right)
and presents some benefits over gbmm. In the modified storage scheme, the strictly
lower triangular part of A31 is conveniently placed in the added rows, as is the strictly
upper part of A11. In consequence, there is no need to operate with them as trian-
gular matrices and the updates of all the blocks in E can be performed in the same
manner, specially via matrix-matrix products (routine gemm from cublas). In fact,
this allows to go a step further, and the updates of [E1

T , E2
T , E3

T]T can be merged
and performed by means of a single matrix-matrix product. This approach presents
two main advantages: it performs a reduced number of invocations to cublas kernels,
and it avoids operations involving small triangular matrices.
On the other hand, there are also two drawbacks related to this implementation.

First of all, the memory requirements are enlarged. In addition, the number of arith-
metic operations is also increased, as it operates with the null elements that lie in the
strictly upper and lower triangles of A11 and A31.

4 Experimental Evaluation

We evaluate the performance of the new codes for the solution of model order reduction
problems extracted from the Oberwolfach benchmark collection [11]. In particular,
from three instances of the same problem that differ in the dimension of the coefficient
matrix; see Table 1. As the coefficient matrix in the RAIL problem is a sparse but
not band matrix, we employ the Reverse Cuthill-McKee method [7] to transform this
data into a band matrix. The execution times of the proposed solver are compared
with those obtained with the lyapack CPU-based solver.

The performance evaluation was carried out using two different hardware platforms:
An intel i7-2600 processor at 3.3 GHz with 8 GB of RAM connected to a nvidia

S2070 (Platform I), and an intel i3-3220 processor at 3.4 GHz with 16 GB of RAM
connected to a nvidia K20 (Platform II); In both platforms we use the CentOS Rel.

9

Platform Problem Version
USFs Total

speedup
time (s) time (s)

Platform I

RAILS

CPU 2.59 2.66 –
CPU-GPU 1.79 1.88 1.4

RAILM

CPU 19.61 19.72 –
CPU-GPU 9.40 9.50 2.1

RAILL

CPU 232.47 232.73 –
CPU-GPU 54.04 54.31 4.3

Platform II

RAILS

CPU 3.57 3.65 –
CPU-GPU 2.55 2.64 1.4

RAILM

CPU 30.74 30.87 –
CPU-GPU 12.75 12.87 2.4

RAILL

CPU 408.54 408.93 –
CPU-GPU 74.04 74.65 5.4

Table 2: Experimental comparison of the CPU and hybrid CPU-GPU lyapack solvers
in Platform I and Platform II.

6.4 O.S. and the gcc v4.4.7 compiler. The CPU solver makes an intensive use of kernels
intel mkl 11.1, while the hybrid CPU-GPU solver is built upon intel mkl 11.1 and
nvidia cuda/cublas 5.0 kernels.

Table 2 shows the results obtained by the hybrid CPU-GPU and the CPU-based
lyapack solvers. The first three columns show the platform, the instance of the RAIL
problem, and the solver employed in that order. The execution time required by the
USFs and the whole solver are reported in the next columns, while the last column
shows the speed-up of the CPU-GPU implementation with respect to the CPU one.

These results exhibit the relevance of the USFs in the entire process, since an average
they require more than 97% of the total time. Thus, the optimization efforts must focus
on the USFs. The new solver exhibits a higher scalability, yielding better speed-ups for
larger problems. In particular, the small problem presents a 1.4× speedup, while the
largest problem evaluated reports a speedup up to 5.4×. The best time of both solvers
is obtained in Platform I. This is explained by the superiority of the CPU in Platform
I. The CPU solver in lyapack is more than 75% faster in the platform equipped
with the intel i7-2600 processor. Also the hybrid CPU-GPU solver benefits from the
more powerful CPU in Platform I. Although most of the computations in the hybrid
solver are off-loaded to the GPU, it is still an hybrid code with synchronization points
between the CPU and the GPU processors. Nevertheless, in the hybrid approach the
relevance of the CPU processor is mitigated and, hence, while the CPU solver is nearly
2× faster in Platform I, the hybrid CPU-GPU solver is only 40% faster. Note also,
that the GPU in Platform II is more powerful than that of Platform I.

10

5 Concluding Remarks

We have presented new hybrid CPU-GPU routines that accelerate the solution of
band Lyapunov equations by off-loading the computationally expensive operations to
the GPU. We extended the lyapack toolbox with a CPU-GPU solver that includes an
efficient data manipulation to minimize transferences between host and device mem-
ories, a tuned band matrix-matrix multiplication reformulated to leverage blas-3 op-
erations, and a novel band linear system solver based on a tailored storage scheme,
look-ahead techniques and overlapped CPU-GPU computations.
The experimental results obtained using three test cases (with dimensions that vary

from 5,177 to 79,841, and bandwidths from 131 to 550), extracted from the Oberwol-
fach benchmark collection, on two platforms equipped with an nvidia 2070 and an
nvidia K20 GPU respectively, reveal speed-ups up to 5.4× when compared with the
corresponding solver based on the intel MKL library. They also show the relevance
of the USFs in the solver, as they require more than 97% of the total time. In con-
sequence the lyapack design permits to effectively adapt the solver to the specific
features of a given problem.
As part of future work, we plan to enhance the performance of Lyapunov solvers for

other structured matrices, e.g., symmetric band matrices, and integrate these efforts
into M.E.S.S. library (the successor of lyapack). Furthermore, we plan to study the
impact of the new GPU-accelerated algorithms on energy consumption.

Acknowledgements

Ernesto Dufrechou and Pablo Ezzatti acknowledge the support from Programa de De-

sarrollo de las Ciencias Básicas, and Agencia Nacional de Investigación e Innovación

of Uruguay. Enrique S. Quintana-Ort́ı was supported by project TIN2011-23283 of the
Ministry of Science and Competitiveness (MINECO) and EU FEDER, and project P1-
1B2013-20 of the Fundació Caixa Castelló-Bancaixa and UJI.

References

[1] Antoulas, A.: Approximation of Large-Scale Dynamical Systems. Philadelphia,
PA (2005)

[2] Benner, P.: Contributions to the numerical solution of algebraic Riccati equations
and related eigenvalue problems. Logos-Verlag (1997)

[3] Benner, P., Dufrechou, E., Ezzatti, P., Igounet, P., Quintana-Ort́ı, E.S., Remón,
A.: Accelerating band linear algebra operations on GPUs with application in
model reduction. Lecture Notes in Computer Science, Vol. 8584, pp. 386–400.
Springer-Verlag (2014)

11

[4] Benner, P., Ezzatti, P., Kressner, D., Quintana-Ort́ı, E.S., Remón, A.: Acceler-
ating model reduction of large linear systems with graphics processors. Lecture
Notes in Computer Science, Vol. 7134, pp. 88–97. Springer (2010)

[5] Benner, P., Ezzatti, P., Kressner, D., Quintana-Ort́ı, E.S., Remón, A.: A mixed-
precision algorithm for the solution of Lyapunov equations on hybrid CPU-GPU
platforms. Parallel Computing 37(8), 439–450 (2011)

[6] Benner, P., Mehrmann, V., Sorensen, D. (eds.): Dimension Reduction of Large-
Scale Systems, Lecture Notes in Computational Science and Engineering, vol. 45.
Springer-Verlag, Berlin/Heidelberg, Germany (2005)

[7] Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices.
In: Proceedings of the 1969 24th National Conference, ACM ’69, pp. 157–172.
ACM, New York, NY, USA (1969)

[8] Datta, B.: Numerical Methods for Linear Control Systems. Elsevier Science
(2004)

[9] Dufrechou, E., Ezzatti, P., Quintana-Ort́ı, E.S., Remón, A.: Accelerating the
Lyapack library using GPUs. The Journal of Supercomputing 65, 1114–1124
(2013)

[10] Green, M., Limebeer, D.: Linear robust control. Prentice-Hall information and
system sciences series. Prentice Hall (1995)

[11] IMTEK: Oberwolfach model reduction benchmark collection. http://www.

imtek.de/simulation/benchmark/

[12] Penzl, T.: A cyclic low-rank smith method for large sparse Lyapunov equations.
SIAM J. Sci. Comput. 21(4), 1401–1418 (1999)

[13] Penzl, T.: LYAPACK: A Matlab toolbox for large Lyapunov and Riccati equa-
tions, model reduction problems, and linear-quadratic optimal control problems.
users guide (version 1.0) (2000)

[14] Petkov, P., Christov, N., Konstantinov, M.: Computational Methods for Linear
Control Systems. Hertfordshire, UK (1991)

[15] Wachspress, E.: The ADI Model Problem. Springer New York (2013)

12

Max Planck Institute Magdeburg Preprints

